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On the generation of surface waves by turbulent 
shear flows 

By JOHN W. MILES 
Department of Engineering, University of California, Los Angeles 

(Received 24 March 1959, and in revised form 4 August 1959) 

The model proposed by Phillips (1957) for the generation of water waves by the 
random fluctuations of normal pressure already present in a turbulent wind is 
generalized to include energy transfer associated with the interaction between 
surface wave and mean air flow (Miles 1957). It is found that this energy transfer 
may increase by an order of magnitude the surface displacements produced by 
a given distribution of pressure fluctuations in the principal stage of development. 

1. Introduction 
Two models for the generation of surface waves on a nearly inviscid liquid by 

turbulent winds have been developed recently by Phillips (1957) and Miles (1957). 
Both models are based on linearized equations of motion, both neglect direct 
interactions between surface waves and turbulent fluctuations, and both predict 
total energy-transfer to gravity waves in order-of-magnitude agreement with 
observation; however, their mechanisms are largely complementary. 

The model proposed by Phillips assumes as its essential mechanism the direct 
action of turbulent fluctuations in aerodynamic pressure on the surface of the 
water, but neglects all interaction between air flow and surface wave. It is an 
uncoupled model in the sense that excitation is assumed to  be independent of 
response. (See also Eckart (1953) for a similar but rather more artificial model.) 

The model proposed by Miles neglects turbulent fluctuations (except as they 
enter indirectly through the prescription of the mean wind profile) and assumes as 
its essential mechanism the interaction between mean air flow and surface wave. 
It is a coupled model in the sense that excitation is assumed to be proportional to 
response, and it finds its antecedants in the classical problems of hydrodynamic 
stability (and also in the sheltering theory of Jeffreys-see Lamb 1945, $348). 

There can be little doubt that both of the foregoing mechanisms are operative 
in some degree, with that of Phillips providing a broad-spectrum energy-input 
and that of Miles a frequency-selective feedback. (But we must bear in mind that 
the two mechanisms are independent only in our simplified model; in reality, the 
turbulent fluctuations must be affected by the wave motion. It also may be 
pertinent to observe that, according to Townsend (1956, $6 . l ) ,  the structure of 
the largest eddies is determined by the stability of the mean profla) Assuming 
linearity, such a feedback may be expected to  augment the wave-growth 
initiated by the pressure fluctuations and lead to an exponential time-dependence, 
rather than the linear time-dependence (for the power spectral density) that 
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characterizes the original model proposed by Phillips. Non-linear effects, such as 
a reduction of the energy transfer from the mean flow (cf. Stuart 1958) to the 
longer waves and breaking of the shorter waves (Phillips 1958), would eventually 
alter this time-dependence, to be sure, but we remark that the amplitudes of the 
longest (also largest and fastest) waves are likely to be limited simply by the 
length of time that the wind blows. 

We shall develop here a model that combines these two mechanisms and then 
seek to determine their relative importance. We consider first (in $2)  the response 
q(x, t )  of a free surface to apressure distributionp,(z, t )  +p l (x ,  t ) ,  wherep, denotes 
a prescribed distribution andp, is linearly proportional to qt; in the context of the 
preceding discussion, p1 represents the aerodynamic pressure coupled with the 
wave motion, but we also may regard it as comprising other effects, such as 
viscous damping in the water. Eventually (in §3),  we shall assume p 1  to be a 
stationary random function of (vector poaition) x and t and generalize to two- 
dimensional surface waves, but initially we shall find it expedient to consider the 
nearly-periodic function 

(1.1 a, b )  

wheref ( t )  is a slowly varying function of time in the sense of (1.1 b)  and V denotes 
the convection speed. Following Phillips, we then shall focus attention on those 
(resonant) surface waves that have wave speeds c = c(k) approximating the 
convection speed V and that may be expressed in the form 

~ ( x ,  t )  = a(t) etMx+f), Id/kcal < 1, (1.2a, b)  

where a(t) also is a slowly varying function of time. (Assuming q in this form allows 
c to remain real, whereas in Miles (1957) it had to be assigned a small imaginary 
part.) After expressing a(t) in terms off(t), we may extend the analysis to a two- 
dimensional disturbance, travelling at an angle a with respect to the convected 
pressure p,, simply by writing? 

v = 42(k) cos a, (1.3) 

where @(k) is the convection speed for the pressure fluctuation of wave-number 
k (42 = 42c in Phillips’s notation). We then (in $3)  may generalize our result to a 
stationary random po with the aid of Fourier-Stieltjes integrals. These could have 
been introduced from the beginning, but carrying out the initial analysis in terms 
of nearly-periodic functions perhaps serves to bring out more simply the essential 
features of the resonance mechanism (discovered by Phillips) and the associated 
approximations. f 

Phillips considered two stages in the development of surface waves under 
random pressure: (a )  an ‘initial stage ’, during which the spectrum of the pressure 
fluctuations may be assumed to be independent of time, and (b )  a ‘principal stage’ 
during which the relatively short waves that influence the wind profile may be 

t This is essentially Squire’s (1933) result. Alternatively, we may note that if 
7 = a(t)  exp [ i k ( z  cos u + y sin u - ct) ] ,  

the phase velocity in the direction of the convected pressure is simply c sec u. 
$ I am indebted to the referee for this suggestion. 
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assumed to have achieved a statistical equilibrium and during which only the 
growth of the longer gravity waves need be considered. We shall give primary 
attention (in $4) to the principal stage, for it is only then that the interaction 
between mean flow and gravity waves could have developed sufficiently to be 
important; however, in order to substantiate this last statement, we shall cite 
(without derivation) the appropriate generalization of Phillips's result for the 
angular spectrum during the initial stage. 

Having combined the two mechanisms of energy transfer in $ Q  2 to 4, we shall 
develop in Q 5 an expression for the energy transfer from the mean flow in terms 
of a Reynolds stress, following a suggestion by Lin (private communication). 
We then shall show that the energy transfer from the mean flow may be of 
dominant importance for a significant portion of the gravity-wave spectrum. 

2. Resonant surface waves excited by convected pressure 
Let ~ ( x ,  t )  be the displacement of the free surface of a liquid of density p, that is 

subjected to a pressure p(x , t ) ,  and let p exhibit the x-dependence eikx. The 
equation of motion for small disturbances then may be put in the form 

(P ,M 7s + (PW9 + T W  7 = -P, (2.1) 

where p,/k is the effective mass per unit area for an irrotational motion of the 
liquid, and g denotes the acceleration of gravity and T the surface tension. We do 
not use the moving reference frame adopted by Phillips, but otherwise (2.1) is 
equivalent to P(2.11). (Here and subsequently, equations from Phillips (1957) 
will be denoted by P( ), where ( ) contains the equation number.) If p = 0, 
(2.1) has free-surface-wave solutions of the form ( 1 . 2 ~ )  with a(t) = const. and 

c2 = gk- l+  (T/p,) k. 
Now let us assume 

P@, t )  = .Po(X, 0 + P l ( X ,  t ) ,  P1 = -CPwCYt, (2.3a, b )  

where p ,  is prescribed by (1.1 a, b )  and cis a small but otherwise arbitrary constant. 
Substituting ( 1 . 1 ~ )  and (2 .3a,  6) in (2.1) and dividing through by p , / k ,  we then 
obtain 

We observe that the complementary solutions to (2.4) are of the form (1.2 a)  with 
a2(t) = eCkcf, and 6 may be interpreted as the fractional increase in mean energy 
per radian-cycle according to 

where E denotes the mean (over an integral number of cycles or wavelengths) 
energy of the surface wave ; 151 < 1 then implies that must be a slowly varying 
function of time in the sense of (1.16) and (1.2b). 

We may express the solution of (2.4), subject to the initial conditions 7 = qt = 0 
a t  t = 0, as 

5 = (kc@-' @.Elat), (2.5) 

eik(x-Vf) 1 

If (7 )  (2.6) 

(2.7) 

~ ( x ,  t )  = _. em(t-7) [eWV-d( l -d  - eik(v'fc)(l-T) 

m = $[kc < 1. 
22PWC s 0 

where 
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We now invoke our hypotheses thatf(t) is a slowly varying function of time and 
that V .IZ c;  then, after several cycles (kct 9 I) ,  the contribution of the term in 
V - c  will be much more important than that in Y + c , t  and we obtain the 
resonance approximation 

if 

Comparing (2.8a) to (1 .2a) ,  we obtain 

a(t)  = -. ed Jexp { - [m + ik( V -  c) ]  7}f(7) d7. 
2 * P W C  0 

We observe that, subject to the restrictions ( l . l b ) ,  (2 .7 )  and (2.8b), a( t )  must be 
a slowly varying function of time, as anticipated in (1.2b). 

3. Response of free surface to random pressure 
Following Phillips, we now suppose the pressure acting on the free surface to 

have the stochastic form 

po(x ,  t )  = exp [ik. (x - Ut)] dw(k, t ) ,  s 
where x denotes vector position on the free surface, kis a (two-dimensional) vector 
wave-number of magnitude k (Phillips used K where we use k), U(k) the convection 
velocity of that differential component of p o  having the wave-number k, and the 
integral is of the Fourier-Stieltjes type. We also define a as the angle between 
U (which is assumed to have a fixed direction, namely, that of the wind) and the 
wave-front normal of a given component of q(x ,  t )  (see (3.2) below); we then may 
regard k and a as the polar (spectral) co-ordinates of k. These definitions corre- 
spond to  those adopted by Phillips, but we again emphasize that we have not 
used his moving reference frame, SO that where he writes x we write x - U t ;  this 
avoids any possible difficulties associated with the fact that, in general, the 
convection speed @ depends on k. 

Corresponding to ( 3 .  l ) ,  we may assume the free-surface response to have the 
form 

q(x, t )  = [exp [ik. (x- Ut)] dA(k, t) .  
J 

Comparing (3.1) and ( 3 . 2 )  with (l.la) and (1.2a) and regarding dw(k,t) as the 
counterpart off(t), the corresponding counterpart of a(t) is 

exp [ i (kc - k .U) t ]  dA (k, t ) .  
Identifying P with 92 cos a, as in (1.3), we then may generalize the resonance 
approximation (2.8a) according to 

dA(k, t )  = - Sf exp { [m + ik( V -  c)] ( t -  7)}dw(k, 7 )  d7 ( 3 . 3 ~ )  
2 2 P W C  0 

if V = @(k) cosa + c (k ) .  (3 .3b)  
t The argument here is essentially similar to that invoked in Kelvin’s stationary-phase 

approximation. Alternatively, taking the Laplace transform of (2.0) and allowing the 
transform parameter to tend to zero (corresponding to kct & 1) reveals that the respective 
integrals are proportional to [ma + ka( V - c)~]-* and [ma + k2( V + c)~]-*. 



Generation of surface waves by turbulent shear flows 47 3 

Still following Phillips, we now introduce the amplitude spectrum 

dA(k, t )  d A * ( k ,  t )  
dk,  dk,  

cD(k,t) = 9 (3.4) 

where the asterisk denotes the complex conjugate, the bar implies an ensemble 
(or equivalent) average, and dk,dk, ( =  k d k d a )  is the element of area in the 
k-plane. Similarly, we introduce the pressure spectrum 

d w ( k ,  t’)  dw*(k,t+t’) 
dk,  dk, 

II(k,t) = > (3.5) 

which is a function of the time separation t .  Substituting ( 3 . 3 ~ )  in (3.4) then 
yields 

O ( k ,  t )  = +, [ r e x p  [m(% - T -  7 ’ )  + ik( 7 - c )  (7’ - 7 ) ]  
4PwC 0 0 

d r  dT’ ( 3 . 6 ~ )  
d w ( k ,  T )  dw*(k ,  7’) 

dk, dk, 
X 

- - &, sf sf exp [m(% - T - 7’)  + ik( 7- c) (7’ - 7)]  n(k ,  7 - 7’ )  &7d7’, 
4PwC 0 0 

(3.6b) 

where (3.6b) follows from ( 3 . 6 ~ )  in accordance with (3.5). Introducing T +  7’ and 
T - T‘ as new variables of integration, noting that II(k, t )  is an even function oft, 
carrying out the T + 7’ integration, and then replacing the dummy variable T - 7’ 
by T ,  we obtain 

We emphasize that the result (3.7) is valid only over that portion of the k-spectrum 
for which (3.3 b) may be considered a satisfactory approximation. 

4. The principal stage; gravity waves 
We consider now what Phillips has termed the principal stage of development, 

in which t is assumed to exceed the development time of d w ( k ,  t ) .  This implies that 
the relatively short waves that influence the mean velocity profile have achieved 
(a statistical) equilibrium and that only the growth of the longer gravity waves 
need be considered. 

We consider first the asymptotic approximation of the integral in (3.7). Let 

gl(t)  = g 2 ( 7 )  sinh [m(t - 7)] dT, 9 2 ( T )  = n(k, T)COS[k(V-C)7], 

(4 . la ,  b)  
c 

and let capitals denote Laplace transforms according to 

G(s) = Iom e-sf g(t)  dt .  (4.2) 

Transforming (4.1 a )  with the aid of the convolution theorem, we obtain 

G,(s) = m(s2 - m2)-’ G,(s). (4.3) 
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We then may obtain the (fist term in the) asymptotic approximation to g ( t )  for 
t 9 T, where T denotes the time scale of g , ( t ) ,  simply by setting s = 0 in Q,(s); on 
the other hand, we have not assumed mt 9 1 and therefore do not approximate 
s2 - m2 by - m2. It follows that 

gl(t) - G2(0) sinh (mt) = sinh (mt) /om,qp(r) d r ,  (4.4) 

whence we obtain from (3.7) 

(4.5a) 

= (2p:c2)-l F(t ,  m) II(k, 0) 8(k, c sec a - %), (4.5b) 

where F(t ,  m) = (2m)-l (e2&- l), (4.6) 

and 8 denotes the integral time-scale of the pressure fluctuations (as defined by 
Phillips). 

Expanding (4.6) according to 

P(t,m) = t+mt2+ ... (mt- t  0) ,  (4.7) 

we observe that (4.5a) reduces to P(4.3) as mt -+ 0 provided that the resonance 
approximation (which impliesneglecting cos [k( V + c) r ]  relative to cos [k( ‘v - c) r ]  
in the integral) is invoked in P(4.3) and a minor error therein is corrected by 
multiplying it by 42.f 

We conclude from equations (4.5) to (4.7) that the relative importance of 
energy transfer through the direct action of the pressure fluctuations and energy 
transfer through the interaction between surface wave and mean flow depends 
(within the assumptions implicit in our model) only on the size of mt relative to 
unity. In  particular, the shape of 0 os k is independent of t if mt < 1, but otherwise 
it is not. 

We also note that if II is assumed to be independent of r - r’ in (3.7), m in the 
initial stage considered by Phillips, and (following Phillips) the angular spectrum 
Y(u)  is defined according to 

where a, = ~08- l  (cmh/%) = COS-~ (4gT/p%4)), (4.9) 

then the time-dependent factor in Y, which was simply t in Phillips’s result, also 
becomes P(t,  m) for the present model. 

5. Energy transfer from the mean flow 
We turn now to the calculation of g, as defined by (2.5). Assuming that the 

motion is two-dimensional and inviscid, it  is known that the rate at which energy 
is transferred from the mean flow to the disturbance is given by (Lin 1955, 
equations (4.5.1,2)) 

t Phillips also has found that P(4.3) et seq. for @ require the correction factor J2 
(private communication). 
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where u and v denote the x- and y-components of velocity and p the density. 
Assuming the Aow to consist of a small disturbance with respect to the parallel 
shear flow U(y), we may take 5 = U(y). We also assume the small disturbance 
to exhibit the x-dependence eikz, as in (1.2a), and take mean values over x. The 
Reynolds stress in (5.1) then may be evaluated according to (Lin 1954)t 

- P,U,tJ = - P , ( ~ ~ , " / W ,  ?J: Y < Yc, ( 5 . 2 ~ )  
= o  Y > Y o  (5.2b) 

- - 

where the subscript c implies evaluation at the critical layer defined by 

UlYC) = c (a = 017 (5.3u) 

or, anticipating the extension to obliquely moving waves, 

U(yc) cos a = c. 

Substituting (5.2a, b) in (5.1) and taking the mean value over x, we obtain 

(5 .3b )  

Yc - (E) = -Pas, (~v)U'(y)dy = -p,C(nU,N/kUL)ZI,". (5.4) 

The mean kinetic and potential energies for the surface wave of (1.2) are equal 
if a(t) is constant and approximately equal if a(t) is slowly varying in the sense 
of (1.2b); accordingly, the mean total energy is given by 

- 
B = pw k-l$. (5.5) 

Substituting (5.4) and (5.5) in (2.5), we obtain 

where 
- _  

The calculation of vE/$, the ratio of the mean-square velocity at the inner 
critical layer to  the mean-square velocity of the surface wave, requires the 
solution of the inviscid Orr-Sommerfeld equation. Only a rough, integral approxi- 
mation was given originally by Miles (1957), but the equation has since been 
integrated numerically (Conte & Miles 1959) for the logarithmic profile 

'(y) = '1 log (y/'O), Ul = U*IK, ( 5 . 8 ~ )  b )  

where U, denotes Prandtl's shearing-stress velocity, K (+ 0.4) Karman's constant, 
and zo the effective roughness parameter. Both the approximate and direct 
(numerical) integrations of the differential equation lead to the conclusion that 
if the parameter P is introduced according to 

6 = s( Ul cos a/c)2P, (5.9) 

where Ul/c is replaced by Ul cos a/c to allow for oblique waves, then 

P + P(kYc) (kY0 < kYc < 21, (5.10) 

t The neglect of viscosity in calculating the Reynolds stress can be justified (&B an 
approximation) only if U,"lUi < 0, corresponding to positive energy-transfer ; otherwise, 
the inviscid solution may not be sigmficant for mathematically small but physically finite 
values of the viscosity. 
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where yo denotes the lower limit of validity for the logarithmic profile. Within 
the indicated range for ky,, /3 does not depend on the parameter kzo,t which enters 
only indirectly through the relation between ky, and c/U, cos a; for gravity waves 
this relation may be placed in the form (from (5.3b) and (5.8a)) 

(5.1 1 a) 
where !2 = gzo/u2,cos2a. (5.11b) 

appearing as 
the family parameter in the latter. We emphasize that, since ,I3 is proportional to 
the profile curvature V”(y,), the assumption of a logarithmic profile may lead to 
appreciable error even though the approximation to U(y) is close; this is especially 
so for the lower portion of the profile. 

ky, = !2( U, cos exp (c/U, cos a), 

The numerical results for /3 are plotted in figures 1 and 2, with 

3 5  

2 
B 

1 

0 
1 0 - 3  3 x  10-3 1 

FIGURE 1. p vus ky,; see (5.9). 

Returning now to the results of $4, we shall consider possibIe values of F(t, m), 

k = g/c2 (5.12) 

as defined in (4.5) and (4.6). Letting 

on the assumption of gravity waves and evaluating 5 from (5.9), we obtain 

2mt = Ckct = sp( u, cos a/c)2 (gtlc). (5.13) 

Referring to the data cited from Sverdrup & Munk by Phillips in his figure 6, and 
assuming that the convection speed 02 for gravity waves can be approximated by 
the anemometer speed U and that the latter is given approximately by 

u = 9u,, (5.14) 

t The referee haa suggested that, similarly, II = p;f Ufk-aP(ky, ,  a) ,  where the depen- 
dence of P on u is much less ‘dramatic’ than its dependence on ky,. This suggestion might 
simplify the evaluation of the integrals in (3.7) and (4.6), but it still remains to determine P. 
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as for wind speeds of the order of lOm/sec at an elevation (of the anemometer) of 
10m and s2 + we present some representative calculations in table 1. We 
also add that calculations carried out for the initial stage lead to the conclusion 
mt < 1 for all t and k for which the pressure spectrum may be considered inde- 
pendent of t and for which energy transfer from the mean flow exceeds that 
dissipated by viscosity in the water (which may be included by adding the 
negative increment - 2u,k2 to m, where uw is the kinematic viscosity of water 
(Stokes 1850)). 

FIGURE 2. P vs c /Ul ;  R = gzo/U:; Ul must be replaced by U,cosu if u =t= 0. 

gtlU c/ u U P [kct t-lF(t, m) 
10s 1 0" 0.19 0.28 1.14 
106 0.5 0" 2.8 33 101s 
10s 0-5 45" 1.1 6.5 102 
104 0.5 0" 2-8 3.3 8 

TABLE 1. Representative calculations based on (5.13) and (4.6) with p,/pw = 1.2 x 10-3 
and l2 = 10-2sec2u. The values of /I have been obtained from figure 2. 

It seems obvious from the values of F(t ,m) indicated in table 1 that the 
inclusion of energy transfer from the mean flow yields a total energy-transfer to 
the surface waves that is likely to be much greater than that predicted (in its 
absence) by P(4.13); on the other hand, we recall that the rate of energy transfer 
from the mean flow to aprescribed spectrum of surface waves appears to be in order- 
of-magnitude agreement with observation (Miles 1959). The fact that P(4.13) 
gives order-of-magnitude agreement with observation then suggests that at 
least one of the approximations invoked by Phillips might be appreciably in error. 
Of these approximations, perhaps the most uncertain are those leading to his 
estimate of root-mean-square pressure fluctuation as (?)% = 0*6(&p, U 2 ) .  This is 
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roughly an order of magnitude larger than the values estimated by Eckart (1953), 
but in the absence of actual measurements the question must be regarded as 
open.? 

It might be objected, to be sure, that the very large values of [kct indicated in 
table 1 imply that the assumption of small disturbances cannot remain valid. 
It is entirely possible, however, that linearized theory does give the right order 
of magnitude for the energy transfer from the mean flow (even though there 
might be some non-linear reduction thereof) and that non-linear effects are 
dominant only in the dissipative mechanism. Such an interpretation is supported 
by the agreement with observation cited above (Miles 1959). 

Another objection that may be lodged against our model (although not for the 
values of c/ U in table 1) is that, for wind speeds of the order of 10 m/sec, there must 
be a significant portion of the gravity-wave spectrum for which ye is so small that 
the logarithmic profile cannot remain valid. It remains true, nevertheless, that in 
the absence of viscosity some energy will be transferred from the mean flow to the 
surface waves if U:/U; < 0, as is evident from (5.4); moreover, the inclusion of 
viscosity (in the air) in the calculation actually can increase this energy transfer 
(see Benjamin 1959; Miles 1959). It also is likely that appreciable energy could 
be transferred through ‘sheltering ’-i.e. form drag, involving a flow that alter- 
nately separates from and reattaches to the wave crests (Lamb 1945, § 348). 

6. Conclusions 
We conclude that energy transfer associated with interaction between surface 

waves and mean air flow in the excitation of these waves by prescribed, random 
fluctuations of normal pressure may increase the total energy-transfer by an order 
of magnitude, at least under those conditions for which non-linear effects may be 
neglected. We emphasize, however, that a decisive assessment of our results 
depends on a more precise determination of the pressure fluctuations than any 
presently available. 
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